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ABSTRACT 

The LUC4,6 cryptosystem is a system analogy to RSA cryptosystem and extended 
from LUC and LUC3 cryptosystems. Therefore, the security problem of the LUC4,6 
cryptosystem is based on integer factorization which is similar to RSA, LUC and 
LUC3 cryptosystems.  The Hastad's attack is one of the polynomial attack which 
relied on the polynomial structure of RSA-type cryptosystem.  In this paper, Hastad's 
Theorem will be used to solve a system of multivariate modular equations and 
Coppersmith Theorem will be used to find a root of a modular equation. Thus, the 

number of plaintexts which are required to succeed the attack can be found. 
 

Keywords: Hastad's Theorem, Coppersmith Theorem, Lucas Sequence, Dickson 
Polynomial. 
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1.  INTRODUCTION 

 The fourth and sixth order of LUC cryptosystem or LUC4,6 

cryptosystem (Wong (2007) had been proposed  in 2007. This cryptosystem 

is analogous to the RSA cryptosystem and extended from LUC and LUC3 
cryptosystems.  The LUC4,6 cryptosystem was derived from the fourth order 

linear recurrence relation which is related to Quartic polynomial and based 

on the Lucas function.   
  

The security problem for LUC4,6 cryptosystem is based on integer 

factorization which is similar to RSA (Rivest, Shamir and Adleman (1978)), 
LUC (Smith and Lennon (1993)) and LUC3 cryptosystems [Said and John].  

The Hastad’s attack is one of the polynomial attack which relied on the 

polynomial structure of RSA-type cryptosystem.  Therefore, the Hastad’s 

attack is able to solve the underlying intractable problem which the attack 
do not factor the RSA- modulus, n for the LUC4,6 cryptosystem directly.  It 

used the other solution to recover the plaintext. 
 

In 1986, Hastad showed that using RSA with low public exponent 

is insecure if the users are sending linearly related plaintexts over a large 
network (Hastad (1986)).  Therefore, Hastad develop a technique to solve a 

system of univariate modular equations to succeed his attack.  Besides that, 

Coppersmith proposed a new method for finding a root of a modular 

equation (Coppersmith (1996)), which turned out to be a better way to 
succeed a successful attack in 1996. 

 

In this paper, the Hastad’s attack will be attack on the RSA, LUC 

and LUC3 cryptosystems, and extended on the LUC4,6 cryptosystem.  The 

cryptosystem will be presented in Section 2.  The theorems which are used 
in the attack will be presented in Section 3.  In section 4, the Hastad’s attack 

will be proposed and discussed.  Finally, the conclusion had been make in 

the last section. 
 

2.  THE CRYPTOSYSTEM 

2.1 RSA Cryptosystem 

In the RSA cryptosystem, a plaintext M can use an encryption key ( , )e n  to 

encrypt it become a ciphertext  C.  The encryption process as follows. 
 

First, the user can use any standard representation to represent the plaintext 

as an integer between 0 and 1.n −  The purpose is getting the plaintext in the 

numeric form for process encryption used. 
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Then, the user encrypt the plaintext, M become ciphertext, C. The 
encryption algorithm defined as   
 

( ) mode
E M C M n= ≡                                 (1) 

 

When the receiver want to decrypt the ciphertext, the user must has a 

decryption key denote by 1 mod ( ),d e nφ−≡ where n pq=  and Euler 

function, ( ) ( 1)( 1).n p qφ = − − Then, the decryption algorithms defined as  
 

( ) modd
D C C n≡ .                                (2) 

 

Note that, the encryption key, � must be relative prime to 1p −  and 1.q −

By the extended Euclidean algorithm, the decryption key, � can be compute 

as follows. 

gcd( ,( 1)( 1)) 1,d p q− − =                                 (3)        

 

1mod( 1)( 1).ed p q≡ − −                                  (4) 
 

where gcd is greatest common divisor and �, � are also relatively prime.   
 

2.2 LUC Cryptosystem 

Let n  be the product of two different odd primes, p  and ,q  and the 

number e  must be relatively primes to 1,p − 1,p + 1q −  and 1.q + The 

encryption process of  LUC cryptosystem can be defined as 
 

( ) ( ,1)mod ,
e

E M C V M n= ≡                    (5) 
 

where ( ,1)
e

V M  is second order Lucas sequence, M  is the plaintext and C  

is the ciphertext.   
 

The corresponding decryption key, d  can be generated by  
 

1mod ( ),ed S n≡                                         (6) 

where ( ) ( ( ))( ( )),
D D

S n p q
p q

= − − 2 4D C= − , and ( )), ( )
D D

p q
 are the 

Legendre symbols of  D  with respect to p  and .q  Therefore, there are four 

possible decryption keys, 
 

( )1 mod ( 1)( 1) ,d e p q
−≡ + +                           (7) 
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( )1 mod ( 1)( 1) ,d e p q
−≡ + −                           (8) 

 

( )1 mod ( 1)( 1) ,d e p q
−≡ − +                                 (9) 

 

( )1 mod ( 1)( 1) .d e p q
−≡ − −                                 (10) 

 

The decryption process is similar to the encryption process, with e  replaced 

by d  and M replaced by .C   
 

 ( ,1)mod
d

M V C n≡ .                              (11) 
 

2.3 LUC3 Cryptosystem 

As in the RSA and LUC cryptosystems, the Cubic analogue to the RSA 

cryptosystem or LUC3 cryptosystem has a number � or we called RSA-

modulus which is the product of two prime numbers p and q.  In the 

encryption process, the encryption key, � must chosen be relatively prime to 

the Euler totient function ( )n pqΦ =  because it is necessary to solve the 

congruence 1mod ( )ed n≡ Φ  to find the decryption key �.   
 

The Euler totient function is defined as 
 

1 21 1 1

1 1 2 2
( ) ,rb b b

r r
n p p p p p p− − −Φ = ⋅ ⋯                               (12) 

where 
2

2

1, if  is of type [3] mod 

1,        if  is of type [2,1] mod ,

1,         if  is of type [1] mod 

i i i

i i i

i i

p p f(x) t p

p p f(x) t p

p f(x) t p

 + +


= −
 −


             (13) 

In practice, since ( )nΦ  depends on the type of an auxiliary polynomial, we 

choose e  prime to 
2

1, 1, 1, 1, 1p q p q p p− − + + + +  and 
2

1q q+ +  to cover 

all possible cases. 
 

The LUC3 cryptosystem is set up based on the third order Lucas sequence 

n
V  derived from the cubic polynomial 

3 2

1 2 1 0,x M x M x− + − =  where 1M  

��  and 2M  constitutes the plaintexts. Then, the encryption function is 

defined by 
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( )1 2 1 2 2 1 1 2( , ) ( , ,1), ( , ,1) ( , )mod ,e eE M M V M M V M M C C n= ≡              (14) 

 

where n pq=  as above, 1 2( , ,1)
e

V M M  and 2 1( , ,1)
e

V M M  are the �-th term 

of the third order Lucas sequence defined by  

 

   1 2 1 1 2 2 1 2 1 2( , ,1) ( , ,1) ( , ,1) ( , ,1)mod
k k k k

V x x xV x x x V x x V x x n≡ − + ,        (15) 

 

with initial values 0 3,V =  1 1V x=  and 
2

2 1 22 .V x x= −   

 

The decryption key is ( , )d n where � is the inverse of  e  modulo ( ).nΦ  To 

decrypt the plaintext, the receiver must know or be able to compute ( )nΦ

and then calculate 
 

   ( )1 2 1 2 2 1 1 2( , ) ( , ,1), ( , ,1) ( , )mod ,d dD C C V C C V C C M M n= ≡          (16) 

 

which recovers the original plaintext 1 2( , ).M M   
 

2.4 LUC4,6 Cryptosystem 

A fourth order linear recurrence of Lucas function is a sequence of integers 

kV  defined by 

                              
4

1

1

( 1) ,i

k i k i

i

V aV
+

−
=

= −∑                                        (17) 

 

with initial values 2

0 1 1 2 1 24, , 2V V a V a a= = = −  and 
3

3 1 1 2 33 , 3 ,V a a a a= − + and 
i

a  are coefficients in quartic polynomial, 
 

                                 4 3 2

1 2 3 4 0,x a x a x a x a− + − + =                                  (18) 

 
Therefore, the encryption function for the LUC4.6 cryptosystem  is defined 
as 
 

1 2 3

1 2 3

2 2

2 1 3 1 3 2 1 3 2

3 2 1

1 2 3

( , , )

( ( , , ,1),

( , 1, 2 , 1, ,1),

( , , ,1)) mod

( , , ) mod ,

e

e

e

E M M M

V M M M

V M M M M M M M M M

V M M M n

C C C n

≡

− + − −

≡

    (19) 
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where pqn = , 1 2 3( , , )M M M  constitute the plaintexts and the encryption 

key, e relative prime to p – 1, q – 1, p + 1, q + 1, p2 + p + 1, q2 + q + 1, p3 + 

p
2 + p + 1, and q

3 + q
2 + q + 1. Besides that, 1 2 3( , , ,1)

e
V M M M  and 

3 2 1( , , ,1)
e

V M M M  are the e-th term of the fourth order Lucas sequence and 
2 2

2 1 3 1 3 2 1 3 2( , 1, 2 , 1, ,1)eV M M M M M M M M M− + − −  is e-th term of the 

sixth order Lucas sequence. 
 

To decipher the plaintexts, the receiver must know or be able to compute 

the Euler totient function Φ(n) for the purpose to compute the decryption 

key is (d, n) where d is the inverse of e mod Φ(n).  The Euler totient 

function Φ(n) for this case can be defined as  
 

                        ( )n p qΦ = ⋅ ,                                           (20) 

where 
 

3 2

3

2

1,  if ( ) mod  is an irreducible quartic 

                            polynomial 

1, if ( ) mod  is an irreducible cubic 

                             polynomial times a linear factor

1

p p p f x p

p f x p

p p

+ + +

−

= − , if ( ) mod  is an irreducible quadratic 

                            polynomial times two linear factors

1, if ( ) mod  is two irreducible  

                             quadratic polynomials 

1, i

f x p

p f x p

p

+

− f ( ) mod  is four linear factorsf x p

















,             (21) 

 

with 4 3 2

1 2 3( ) 1f x x C x C x C x= − + − + .  Similarly for q . 

 

Thus, the decryption function define as  
 

          

1 2 3

1 2 3

2 2

2 1 3 1 3 2 1 3 2

3 2 1

1 2 3

( , , )

( ( , , ,1),

( , 1, 2 , 1, ,1),

( , , ,1)) mod

( , , ) mod ,

d

d

d

D C C C

V C C C

V C C C C C C C C C

V C C C n

M M M n

≡

− + − −

≡

,                 (22) 
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which recovers the original plaintexts ),,( 321 mmm .  

 

3.  METHODOLOGY 

The Hastad’s attack is used Hastad’s Theorem to show that using 
RSA with low public exponent is insecure if the users are sending linearly 
related plaintexts over a large network (Hastad (1986)).   
 

Theorem 1 (Hastad’s Theorem) 

 Let 
1

k

ii
N n

=
= ∏  and 

1min .i k in n≤ ≤= Given a set of k equations 

,0
0modj

i j ij
a x n

δ

=
≡∑  where the moduli ni  are pairwise relatively prime 

and ( ), 0
gcd , 1i j ij

a n
δ

=
=  for all i.  Then it is possible to find x n<  in 

polynomial time if  ( 1)( 2) / 4 1 ( 1) / 22 ( 1)N n
δ δ δ δ δδ+ + + +> + . 

 

Proof . See Joye (1997), Corollary 3.2.■ 
 

In 1996, Coppersmith extended the result from Hastad’s theorem that 
eventually becomes the Coppersmith’s theorem (Coppersmith (1996)).  

This theorem is specific for a monic integer polynomial of degree δ. 
 

Theorem 2 (Coppersmith’s Theorem) 

Let a monic integer polynomial P(x) of degree δ and a positive integer N of 

unknown factorization.  In time polynomial in log N and δ, we can find all 

integer solutions x0 to 0( ) 0modP x N≡  with 1/

0x N δ< . 

 

Proof:  See Coppersmith (1996), Corollary 2.■ 
 

Joye (1997) had improved the Hastad’s theorem as follows. 
 

Theorem 3. Consider a system of k modular polynomial equations of 

degree ≤ δ with l variables given by   

     
1 2

1 2

1 2

1 2

, , , , 1 2

, , , 0

0mod
l

l

l

l

j j j
jj j

i j j j l i

j j j

a x x x n
δ+ + + ≤

=

≡∑
⋯

…

…

… ,                   (22) 

 

for i = 1, … , k and where x1, … , xi<n and 
iki

nn ≤≤= 1min .  Let 

1

k

ii
N n

=
= ∏ , 

1

1

m

m l
f m

m

δ

=

+ − 
=  

 
∑  and 

0

1

m

l m
g

m

δ

=

+ − 
=  

 
∑ , if the 
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moduli ni are coprime, then ( )1 2

1 2
1 2

, , , ,
, , ,

gcd , 1
l

l
l

j j j

i j j j i
j j j

a n
δ+ + + ≤

=
⋯

…

…

 for i = 1,…, k 

and if  
 

( 1) / 4
2

g g g f
N g n

+> ,                                            (23) 
 

the result is in polynomial time a real-valued equation which is equivalent 

to Equation (23). 
 

Proof. See Joye (1997), Theorem 3.1.■ 

 

4.  HASTAD'S ATTACK 

4.1 Attack on the RSA Cryptosystem 

Suppose that m is the plaintext of RSA cryptosystem.  Let 
1

k

i

i

N n
=

=∑ , where 

( , ) 1,
i j

n n =
 
for ,i j≠  

then the corresponding ciphertexts are 

mod .
e

i ic M n≡
 

 

We can find modeC M N≡  by Chinese remainder theorem. 
 

                                
1

mod
k

i i

i

C c u N
=

≡∑ ,                                        (24) 

 

where mod .
j ij i

u nδ≡

 

However, since ,C N<  it can be recovered. 

 

Corollary 1. In the RSA cryptosystem, a set of k linearly related plaintexts 

can be recovered if ( 1) 2k e e> +  and 
( 1)( 2) 4 1

2 ( 1) .
e e e

in e
+ + +> +   

 

Proof.  See (Joye 1997), Corollary 3.3.   ■ 
 

4.2 Attack on the LUC Cryptosystem 

In 1995, Pinch extend the Hastad’s attack to the LUC cryptosystem (Pinch 

(1995)).  Suppose that 1

k

i i
N n== ∏  and 1min .

i k i
n n≤ ≤=  Let M is the 

plaintext of LUC cryptosystem, then mod
i i i i

m M nα β≡ + and the 

ciphertext, ( ,1) mod .
ii e i i i

c V M nα β≡ +  The Dickson polynomial (Lidl 

(1993)) and Lucas sequence are equality already proved by Lidl.  
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Therefore,  
 

       ( ,1) ( ,1) mod
i ie i i e i i i

V M D M nα β α β+ ≡ + ,                        (25) 

 

where ( ,1)
ie i i

D Mα β+  is Dickson polynomial, which define as  

 

              
2

2

0

( ,1) ( 1) ( ) ,

ei

i

i

i e iii
e i i i i

i i

e ie
D M M

ie i
α β α β

 
 

−

=

−  
+ = − +  

−   
∑         (26) 

 

Thus, ( ,1) mod
ii e i i i

c V M nα β≡ +  can be considered as polynomials in M 

of degree ei.   
 

Corollary 2. In the LUC cryptosystem, a set of k linearly related plaintexts 

can be recovered if ( 1) 2k e e> +  and 
( 1)( 2) 4 1

2 ( 1) ,
e e e

in e
+ + +> + where 

1max .
i k i

e e≤ ≤=   

 

Proof.  See Pinch (1995), Theorem 3.   ■ 
 

4.3 Attack on the LUC3 Cryptosystem 

Suppose that 1

k

i i
N n== ∏  and 1min .

i k i
n n≤ ≤=  Let M1 and M2 are a set of the 

plaintexts of LUC3 cryptosystem, then 1, 1 modi i i iM M nα β≡ +  and 

2, 2 mod .i i i iM M nα β≡ +   

The ciphertexts are 1, 1 2( , ,1)mod
ii e i i i i i

C V M M nα β α β≡ + + and 

2, 1( , ,1)mod .
ii e i i i i i

C V M M nα β α β≡ + +  As we known, the third order of 

Dickson polynomial (Lidl (1993)) and Lucas sequence are equality.  

Therefore,  
  

 
1 2

1 2

( , ,1)

( , ,1)mod ,

i

i

e i i i i

e i i i i i

V M M

D M M n

α β α β

α β α β

+ +

≡ + +
                                 (27) 

 

where 1 2( , ,1)
ie i i i i

D M Mα β α β+ +  is Dickson polynomial, which define as

  

2 3

2 3

0 0

2( 1)
( , ,1) ,

2

e ei i

i

i

i
i e i j ii

e

i j i

e i j i je
D x y x y

i j ie i j

   
   

− −

= =

− − +   −
=    

+− −    
∑∑        (28) 
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where 2 3 .
i

i j e+ ≤   Similar for 2 1( , ,1)
ie i i i i

V M Mα β α β+ + . 

 

Thus, 1, 1 2( , ,1)mod
ii e i i i i i

C V M M nα β α β≡ + +  and 2, 2( ,
ii e i i

C V Mα β≡ +   

1 ,1)mod
i i i
M nα β+  can be considered as polynomials in M1 and M2 of 

degree ei.   
 

Corollary 3. Let 1

k

i i
N n== ∏  and 1min .

i k i
n n≤ ≤= Given a set of k 

equations 

                 
1 2

1 2

1 2

1 2

, , 1 2

, 0

0mod
j j

j j

i j j i

j j

a x x n
δ+ ≤

=

≡∑ ,                                      (29) 

 

where the moduli 
i

n are pairwise relatively prime and 

( )1 2

1 2
1 2

, , , 0
gcd , 1

j j

i j j i
j j

a n
δ+ ≤

=
=  for all i.  Then it is possible to find x n<  in 

polynomial time if  

 

 ( )
2

1 1
2 3

( 1)( 2)( 3 4)
( 1)( 2) ( 1)( 2)116

2
2 ( 1)( 2)N n

δ δ δ δ
δ δ δ δ δ

δ δ
+ + + +

+ + + +
> + + .         (30) 

 

Proof.  In two variable case for Theorem 1. 
 

                     1
3

1

1
( 1)( 2)

m

m
f m

m

δ

δ δ δ
=

+ 
= = + + 

 
∑ ,                        (31) 

 

                1
2

0

1
( 1)( 2)

m

m
g

m

δ

δ δ
=

+ 
= = + + 

 
∑ .                                  (32) 

 

Then, substitute Equations (32) and (33) into (24) will get Equation (31).� 
 

Corollary 4.  In the LUC3 cryptosystem, a set of k linearly related 

plaintexts can be recovered if 
1

( 1)( 2)
3

k e e e> + + and 

2( 1)( 2)( 3 4) 1
( 1)( 2)

16 2
1

2 ( ( 1)( 2)) ,
2

e e e e
e e

in e e

+ + + +
+ +

> + +  where 
1

max .
i k i

e e≤ ≤=   

 

Proof. The proving for this corollary is to verify that the conditions of 

Corollary 4.3 is fulfilled.  From the k sets of ciphertexts, there exist k 
equations  
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1, 1 2 1 2 1,

( , ) ( , ,1) 0mod
ii e i i i i i i

P M M D M M C nα β α β≡ + + − ≡ ,       (33) 

 

 
2, 1 2 2 1 2,

( , ) ( , ,1) 0mod
ii e i i i i i i

P M M D M M C nα β α β≡ + + − ≡ .      (34) 

 

Suppose that the moduli 
i

n are pairwise coprime and also that the 

coefficients of polynomials 1, 1 2( , )iP M M  and 2, 1 2( , )iP M M  are relatively 

prime to ,
i

n  otherwise the plaintexts can be recovered by factoring .
i

n   
 

Since 

1
( 1)( 2)

3
k e e e> + +  and 

2( 1)( 2)( 3 4) 1
( 1)( 2)

16 2
1

2 ( ( 1)( 2)) ,
2

e e e e
e e

in e e

+ + + +
+ +

> + +  

it follows 
 

 

( )

1
3

2

1 1
2 3

( 1)( 2) 1

1

1 2

( 1)( 2)( 3 4)
( 1)( 2) ( 1)( 2)116

2
2 ( 1)( 2) ,

e e ek

i i

i i

e e e e
e e e e e

N n n n

e e n

+ + +

= =

+ + + +
+ + + +

= ≥

> + +

∏ ∏
             (35) 

 

where 1 1min .
i k

n n≤ ≤=    ■ 
 

4.4  Attack on the LUC4,6 Cryptosystem 

Suppose that 
1

k

ii
N n

=
= ∏  and 

1min i k in n≤ ≤= .  Let m1, m2 and m3 are a set 

of the plaintexts of LUC4,6 cryptosystem, then 1, 1 modi i i im m nα β≡ + , 

2, 2 modi i i im m nα β≡ + , and 3, 3 mod .i i i im m nα β≡ + Therefore, the 

ciphertexts are 
 

 1, 1 2 3( , , ,1) mod
ii e i i i i i i i

c V m m m nα β α β α β≡ + + +   ,        (36) 

       

2, 2 1 3

2 2

1 3 2

1 3 2

( , ( )( ) 1,

( ) ( ) 2( ),

( )( ) 1, ,1)mod ,

ii e i i i i i i

i i i i i i

i i i i i i i

c V m m m

m m m

m m m n

α β α β α β

α β α β α β

α β α β α β

≡ + + + −

+ + + − +

+ + − +

                    (37) 

 

 
3, 3 2 1

( , , ,1)mod
i e i i i i i i ii

c V m m m nα β α β α β≡ + + +   ,                       (38) 

 

Since the Hastad’d attack is relied on the polynomial structure, then the 
Lucas sequence should be transform to polynomial.  In this situation, the 

Dickson polynomial (Dickson (1987)) is able to transform it.  That mean, 
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the fourth order and sixth order of Dickson polynomials and Lucas 
sequences both are equivalent. 

 

Proposition 1.  The fourth order Lucas sequence are equivalent to the three 

variables of Dickson polynomials, which is defined as  

  

       ( )( )
( )

2 3 4

0 0 0

2 3 4

( , , ,1) ( , , ,1)

( 1) 2 3

2 3

,

e ei i
e e ei i i i k

i i

i j k
i

e i j k i ji

V x y z D x y z

e e i j k i j k
i ji j ke i j k

i j
x y z

i

     
+     

     

= = =

− − −

∑ ∑ ∑

=

 − − − − + +=   ++ +− − − 
+×

   (39) 

 

where 2 3 4
i

i j k e+ + ≤ . 
 

Proof.  See Wong (2011),  Proposition 3.5.  ■ 
 

Proposition 2. The sixth order Lucas sequence is equivalent to the five 
variables of Dickson polynomials, which is define as 

  

          

1 2 3 4 5

1 2 3 4 5

1 3 52 3 4 5 6

0 0 0 0 01 2 3 4 5
1 2 3 4 5

1 2 3 4 5 1

1 2 3 4 5

( , , , , ,1)

( , , , , ,1)

( 1)

2 3 4 5

2 3 4 5

ei

ei

e e e e ei i i i i i i i

i

i i i i i
i

i

V x x x x x

D x x x x x

e

e i i i i i

e i i i i i i

i i i i i

         
+ +         

         

= = = = =
∑ ∑ ∑ ∑ ∑

=

 −
=  

− − − − − 

− − − − − + 
×  

+ + + + 

2 3 4 5

1 2 3 4

1 2 3 4 1 2 3 1 2 2 3 4 5 61 2 3 4 5

1

1 2 3 11 2

31 2 4

2 3 4 5
,

e i i i i ii

ii i i

i i i i

i i i i

i i i i i i i i i
x

i i i ii i

x x x x

− − − − −

+ + + 
 

+ + + 

+ + + + + +   
×    

+ + +    

×

                   (40) 

 

where 
1 2 3 4 5

2 3 4 5 6
i

i i i i i e+ + + + ≤ . 

  

Proof.  See Wong (2011), Proposition 3.6.  ■ 
 

By Proposition 1 and Proposition 2, Equations (37), (38), and (39) can be 

considered as polynomials in m1, m2 and m3 of degree ei.   
 

For Hastad’s Theorem, there is a variable to be considered.  However, the 

LUC4,6 cryptosystem had three variables.  Therefore, there are necessary to 
modify the Hastad’s Theorem.   
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Corollary 5:  Let 1

k

i i
N n=∏=  and 

1
min .

i k i
n n

≤ ≤
=  Given a set of k equations 

 

                     
1 2 3

31 2

, , , 1 2 31 2 3
, , 01 2 3

0mod ,
j j j

jj j

i j j j i
j j j

a x x x n
δ+ + ≤

=

∑ ≡                             (41) 

 

where the moduli ni are pairwise relatively prime and 

( )1 2 3

, , ,1 2 3 , ,1 2 3

gcd , 1
j j j

i j j j i
j j j

a n
δ+ + ≤

=  for all i.  Then it is possible to find x n<  in 

polynomial time if  

  

( )
2( 1)( 2 )( 3)( 4 )( 2 3) 1( 1)( 2)( 3)

6144 1
6

1 ( 1)( 2)( 3)
8

2 ( 1)( 2)( 3)

,

N

n

δ δ δ δ δ δ
δ δ δ

δ δ δ δ

δ δ δ
+ + + + + +

+ + +

+ + +

> + + +

×

         (42) 

 

Proof. In three variables case for Theorem 3, 
 

         
1

2 1
( 1)( 2)( 3),

8m

m
f m

m

δ

δ δ δ δ
=
∑

+ 
= = + + + 

 
                        (43) 

and 

                
0

2 1
( 1)( 2)( 3),

6m

m
g m

m

δ

δ δ δ δ
=
∑

+ 
= = + + + 

 
                 (44) 

 

Then, substitute Equations (45) and (46) into Equation (24), get Equation 

(43).  ■ 
 

Corollary 6. In the LUC4,6 cryptosystem, a set of k linearly related 
plaintexts can be recovered if  

 

                        )3)(2)(1(
8
1 +++> eeeek   ,                                      (45) 

and 

 ( ) )3)(2)(1(

6
1144

)32)(4)(3)(2)(1(

6
1

2

)3)(2)(1(2
+++

++++++

+++>
eee

eeeeee

i eeen  ,   (46) 

 

where iki ee ≤≤= 1max . 

 

Proof. The proving for this corollary is to verify that the conditions of 

Corollary 1 are fulfilled.  From the k sets of ciphertexts, there exist k 
equations  

 

1, 1 2 3 1 2 3 1,
( , , ) ( , , ,1) 0mod .

i e i i i i i i i ii
P m m m D m m m c nα β α β α β≡ + + + − ≡       (47) 
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,mod0

mod)1,,1))((

),(2)()(

,1))((,(),,(

,2231

2
2

3
2

1

312321,1

i

iiiiiiii

iiiiii

iiiiiiei

n

ncmmm

mmm

mmmVmmmP
i

≡

−+−++

+−+++

−+++≡

βαβαβα

βαβαβα

βαβαβα

       (48) 

iiiiiiiiei ncmmmDmmmP
i

mod0)1,,,(),,( ,3123321,3 ≡−+++≡ βαβαβα   ,     (49) 

 

Suppose that the moduli 
i

n  are pairwise coprime and also that the 

coefficients of polynomials 
1, 1 2 3

( , , ),
i

P m m m
2, 1 2 3

( , , )
i

P m m m and 

3, 1 2 3
( , , )

i
P m m m  are relatively prime to ni; otherwise the plaintexts can be 

recovered by factoring  ni.. 

Since  

                   1
8 ( 1)( 2)( 3),k e e e e> + + +   ,                               (50) 

 

 ( )
2

( 1)( 2)( 3)( 4)( 2 3) 1( 1)( 2)( 3)
6144 1

62 ( 1)( 2)( 3) ,
e e e e e e

e e e

i
n e e e

+ + + + + +
+ + +

> + + +            (51) 

 

it follows 
 

 ( )

1 ( 1)( 2 )( 3) 1
8

1 2

2( 1)( 2)( 3)( 4 )( 2 3) 1( 1)( 2)( 3)
6144 1

6

1 ( 1)( 2 )( 3)
8

2 ( 1)( 2)( 3)

,

e e e ek

i i
i

e e e e e e
e e e

e e e e

N n n

e e e

n

+ + + +

=

+ + + + + +
+ + +

+ + +

∏ ∏= ≥

> + + +

×

               (52) 

 

where 1min
i k i

n n≤ ≤= .  ■ 

 

Coppersmith based variation method is based on the Coppersmith’s 

theorem which is defined in Theorem 2.  With this method, sending more 

than e linearly related plaintexts that are encrypted via RSA or LUC 
cryptosystem with encryption key, e and RSA-moduli ni is dangerous. 

However, this method cannot be directly applied to LUC4,6 cryptosystems. 

This is because one of the conditions in Coppersmith’s theorem is that the 
polynomial, which is analyzed should be a monic polynomial, but the 

polynomials in LUC4,6 cryptosystems are multivariable polynomials.   
 

Nevertheless, Julta improved the theorem to multivariable 

polynomials (Julta (1998)).  In that article, the author states the following: 
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“Let 1( , , ) 0mod
m

P x x N≡…  be a modular 

multivariable polynomial equation, in m variables, and total 

degree k with a root ix ,0 , for 1 .i m≤ ≤  Let 0,
i

ix N
α< , 

1
i k

α <∑   and k linear independent integer polynomial 

equations (in m variables) of total degree polynomial in 

Nmk log , in polynomial time in logmk N , such that each 

of the equations has ix ,0  as a root.”   

 

Therefore, all integer solution 0,ix  to 
1

( , , ) 0 mod
m

P x x N≡…  can be 

found with 
1

0,

k

i
x N< . 

 

5.  CONCLUSION 

For LUC4,6 cryptosystem, Dickson polynomial is enabling the 

Lucas sequence to transform into  multivariate polynomial.  When the 

plaintexts transform from the sequence to the polynomial, then the number 

of plaintexts are required to succeed the Hastad’s attack can be found.  By 

Coppersmith based variation and the statement from Julta, we can conclude 

that the result of sending more than e linearly related plaintexts that are 

encrypted via LUC4,6 cryptosystem with encryption key, e and RSA-moduli 

ni is dangerous.  
 

Based on Corollary 1, 2, 4, and 6, the number of plaintexts are 

required to succeed the Hastad’d attack for the RSA, LUC, LUC3, and  

LUC4,6 cryptosystems can be found.  Hence, the comparison of the 

requirement of the number of plaintexts between RSA, LUC, LUC3 and 

LUC4,6 had been shown in Table 1. 
 

 TABLE 1: The number of plaintexts, k  required to succeed the Hastad’s Attack 

 

e 3 5 7 11 13 17 19 

RSA 7 16 29 67 92 154 191 

LUC 7 16 29 67 92 154 191 

LUC3 21 71 169 573 911 1939 2661 

LUC4,6 46 211 631 3004 5461 14536 21946 
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Table 1 show that the requirement of the number of plaintexts to 

succeed the Hastad’s attack for the LUC4,6 cryptosystem is the highest.  For 

LUC4,6 cryptosystem, if public key, 19=e , at least 21946 plaintexts is 

required to hack the LUC4,6 cryptosystem using Hastad’s attack.  If the 

cryptosystem is 128-bit, how many number of plaintext is required? It is 

almost 504 bits of number. Thus, the LUC4,6 cryptosystem is more secure 

than RSA, LUC and LUC3 cryptosystems.  
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